Search results for "Methods: observational"
showing 10 items of 12 documents
A Precise Photometric Ratio via Laser Excitation of the Sodium Layer II: Two-photon Excitation Using Lasers Detuned from 589.16 nm and 819.71 nm Reso…
2020
This article is the second in a pair of articles on the topic of the generation of a two-color artificial star (which we term a "laser photometric ratio star," or LPRS) of de-excitation light from neutral sodium atoms in the mesosphere, for use in precision telescopic measurements in astronomy and atmospheric physics, and more specifically for the calibration of measurements of dark energy using type Ia supernovae. The two techniques respectively described in both this and the previous article would each generate an LPRS with a precisely 1:1 ratio of yellow (589/590 nm) photons to near-infrared (819/820 nm) photons produced in the mesosphere. Both techniques would provide novel mechanisms f…
X-ray emitting hot plasma in solar active regions observed by the SphinX spectrometer
2012
Aims. The detection of very hot plasma in the quiescent corona is important for diagnosing heating mechanisms. The presence and the amount of such hot plasma is currently debated. The SphinX instrument on-board the CORONAS-PHOTON mission is sensitive to X-ray emission of energies well above 1 keV and provides the opportunity to detect the hot plasma component. Methods. We analysed the X-ray spectra of the solar corona collected by the SphinX spectrometer in May 2009 (when two active regions were present). We modelled the spectrum extracted from the whole Sun over a time window of 17 days in the 1.34− 7k eV energy band by adopting the latest release of the APED database. Results. The SphinX …
A precise photometric ratio via laser excitation of the sodium layer - I. One-photon excitation using 342.78 nm light
2020
The largest uncertainty on measurements of dark energy using type Ia supernovae is presently due to systematics from photometry; specifically to the relative uncertainty on photometry as a function of wavelength in the optical spectrum. We show that a precise constraint on relative photometry between the visible and near-infrared can be achieved in upcoming surveys (such as in LSST at the Vera C. Rubin Observatory) via a mountaintop-located laser source tuned to the 342.78 nm vacuum excitation wavelength of neutral sodium atoms. Using a high-power (500 W) laser modified from laser guide star studies, this excitation will produce an artificial star (which we term a "laser photometric ratio s…
FRIPON: a worldwide network to track incoming meteoroids
2020
Context. Until recently, camera networks designed for monitoring fireballs worldwide were not fully automated, implying that in case of a meteorite fall, the recovery campaign was rarely immediate. This was an important limiting factor as the most fragile - hence precious - meteorites must be recovered rapidly to avoid their alteration. Aims. The Fireball Recovery and InterPlanetary Observation Network (FRIPON) scientific project was designed to overcome this limitation. This network comprises a fully automated camera and radio network deployed over a significant fraction of western Europe and a small fraction of Canada. As of today, it consists of 150 cameras and 25 European radio receiver…
IGR J17503–2636: a candidate supergiant fast X-ray transient
2019
IGR J17503-2636 is a hard X-ray transient discovered by INTEGRAL on 2018 August 11. This was the first ever reported X-ray emission from this source. Following the discovery, follow-up observations were carried out with Swift, Chandra, NICER, and NuSTAR. We report in this paper the analysis and results obtained from all these X-ray data. Based on the fast variability in the X-ray domain, the spectral energy distribution in the 0.5-80 keV energy range, and the reported association with a highly reddened OB supergiant at ~10 kpc, we conclude that IGR J17503-2636 is most likely a relatively faint new member of the supergiant fast X-ray transients. Spectral analysis of the NuSTAR data revealed …
The 2017 May 20 stellar occultation by the elongated centaur (95626) 2002 GZ32
2021
Full list of authors: Santos-Sanz, P.; Ortiz, J. L.; Sicardy, B.; Benedetti-Rossi, G.; Morales, N.; Fernández-Valenzuela, E.; Duffard, R.; Iglesias-Marzoa, R.; Lamadrid, J. L.; Maícas, N.; Pérez, L.; Gazeas, K.; Guirado, J. C.; Peris, V.; Ballesteros, F. J.; Organero, F.; Ana-Hernández, L.; Fonseca, F.; Alvarez-Candal, A.; Jiménez-Teja, Y. Vara-Lubiano, M.; Braga-Ribas, F.; Camargo, J. I. B.; Desmars, J.; Assafin, M.; Vieira-Martins, R.; Alikakos, J.; Boutet, M.; Bretton, M.; Carbognani, A.; Charmandaris, V.; Ciabattari, F.; Delincak, P.; Fuambuena Leiva, A.; González, H.; Haymes, T.; Hellmich, S.; Horbowicz, J.; Jennings, M.; Kattentidt, B.; Kiss, Cs; Komžík, R.; Lecacheux, J.; Marciniak, …
Slender Ca II H fibrils mapping magnetic fields in the low solar chromosphere
2017
S. Jafarzadeh et. al.
Prolonged sub-luminous state of the new transitional pulsar candidate CXOU J110926.4-650224
2019
We report on a multi-wavelength study of the unclassified X-ray source CXOU J110926.4-650224 (J1109). We identified the optical counterpart as a blue star with a magnitude of $\sim$20.1 (3300-10500 $\require{mediawiki-texvc} \AA$). The optical emission was variable on timescales from hundreds to thousands of seconds. The spectrum showed prominent emission lines with variable profiles at different epochs. Simultaneous XMM-Newton and NuSTAR observations revealed a bimodal distribution of the X-ray count rates on timescales as short as tens of seconds, as well as sporadic flaring activity. The average broad-band (0.3-79 keV) spectrum was adequately described by an absorbed power law model with…
Searching for pulsed emission from XTE J0929-314 at high radio frequencies
2009
The aim of this work is to search for radio signals in the quiescent phase of accreting millisecond X-ray pulsars, in this way giving an ultimate proof of the recycling model, thereby unambiguously establishing that accreting millisecond X-ray pulsars are the progenitors of radio millisecond pulsars. To overcome the possible free-free absorption caused by matter surrounding accreting millisecond X-ray pulsars in their quiescence phase, we performed the observations at high frequencies. Making use of particularly precise orbital and spin parameters obtained from X-ray observations, we carried out a deep search for radio-pulsed emission from the accreting millisecond X-ray pulsar XTE J0929-31…
Spectropolarimetric evidence for a siphon flow along an emerging magnetic flux tube
2016
©2017 The American Astronomical Society. All rights reserved.We study the dynamics and topology of an emerging magnetic flux concentration using high spatial resolution spectropolarimetric data acquired with the Imaging Magnetograph eXperiment on board the sunrise balloon-borne solar observatory. We obtain the full vector magnetic field and the line of sight (LOS) velocity through inversions of the Fe i line at 525.02 nm with the SPINOR code. The derived vector magnetic field is used to trace magnetic field lines. Two magnetic flux concentrations with different polarities and LOS velocities are found to be connected by a group of arch-shaped magnetic field lines. The positive polarity footp…